Self-adjoint, Unitary, and Normal Weighted Composition Operators in Several Variables

ثبت نشده
چکیده

We study weighted composition operators on Hilbert spaces of analytic functions on the unit ball with kernels of the form (1− 〈z, w〉)−γ for γ > 0. We find necessary and sufficient conditions for the adjoint of a weighted composition operator to be a weighted composition operator or the inverse of a weighted composition operator. We then obtain characterizations of self-adjoint and unitary weighted composition operators. Normality of these operators is also investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces

We give some sufficient conditions under which the tuple of the adjoint of weighted composition operators $(C_{omega_1,varphi_1}^*‎ , ‎C_{omega_2,varphi_2}^*)$ on the Hilbert space $mathcal{H}$ of analytic functions is supercyclic‎.

متن کامل

Weighted composition operators on measurable differential‎ ‎form spaces

In this paper, we consider weighted composition operators betweenmeasurable differential forms and then some classic properties of these operators are characterized.

متن کامل

A note on $lambda$-Aluthge transforms of operators

Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...

متن کامل

A characterization of orthogonality preserving operators

‎In this paper‎, ‎we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$‎. ‎We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator‎. ‎Also‎, ‎we prove that every compact normal operator is a strongly orthogo...

متن کامل

Separating partial normality classes with weighted composition operators

In this article, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^{2}(Sigma)$ such as, $n$-power normal, $n$-power quasi-normal, $k$-quasi-paranormal and quasi-class$A$. Then we show that weighted composition operators can separate these classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011